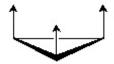

MO Scheme of BF₃ Fluorine SALCs and Boron AOs

• Assume that fluorine 2s orbitals are not involved in the bonding and only consider the 2p orbitals.

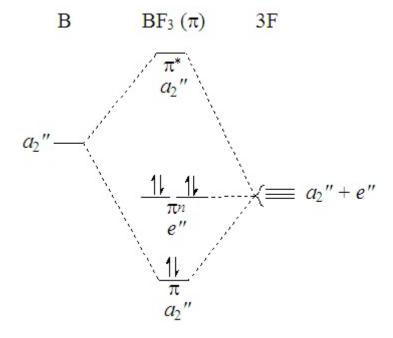

- The $2p_z$ orbital on each fluorine is perpendicular to the BF₃ plane and capable of forming out-of-plane pi interactions (π_{\perp}) .
- The $2p_x$ orbital points toward the B atom and forms sigma interactions (σ)
- The $2p_y$ orbital is parallel to the BF₃ plane and has the potential to form in-plane pi interactions (π_{\parallel}) .

The symmetries of the central boron AOs are as follows:

$$s = A_1'$$
 $(p_x, p_y) = E'$ $p_z = A_2''$

Out-of-Plane Pi Interactions

- The effective $p\pi$ interactions are the out-of-plane type formed from combinations of $2p_z$ AOs on both B and F atoms.
- The formation of the SALCs is based on the following vector set.



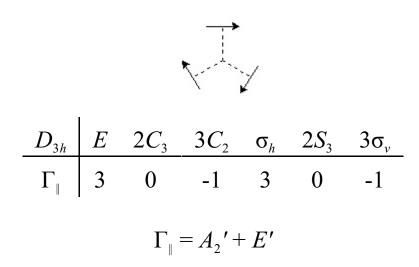
• The reducible representation and its decomposition are

$$\Gamma_{\pi} = A_2'' + E''$$

- The A_2 " SALC matches with the "empty" $2p_z$ AO on B.
- The *E*" SALCs have no match on B and remain nonbonding.

Pi-Only MO Scheme for BF₃

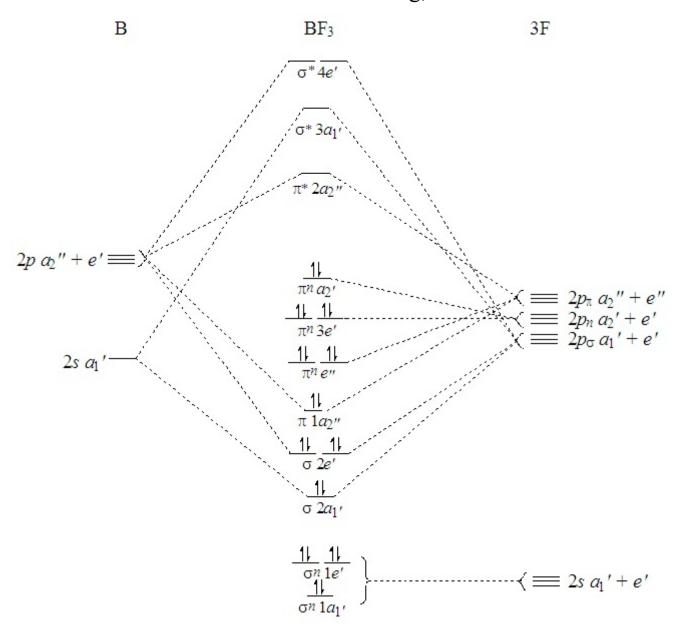
SALCs for Core (Nonbonding) F 2s


D_{3h}	E	$2C_3$	$3C_2$	σ_{h}	$2S_3$	$3\sigma_v$
Γ_{2s}	3	0	1	3	0	1

$$\Gamma_{2s} = A_1' + E'$$

Sigma SALCs for F $2p_x$

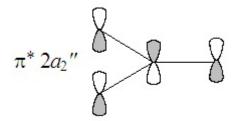
- The vector set of $2p_x$ sigma bonding is identical to the set shown for 2s.
 - Therefore, $\Gamma_{\sigma} = A_1' + E'$.
- The A_1 ' SALC matches with the boron 2s AO.
- The E' SALCs match with the degenerate boron $2p_x$ and $2p_y$ AOs.


In-Plane Pi-SALCs

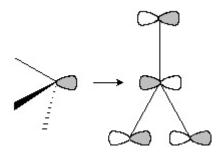
- The A_2 ' SALC has no match in B AOs and must be strictly nonbonding.
- The E' SALCs do match with boron $2p_x$ and $2p_y$, which are involved in sigma bonding.
- Assuming that the sigma interactions are more effective, the in-plane pi interactions of the E' SALCs can be taken to be essentially nonbonding.

Complete MO Scheme of BF₃

The ordering of levels in the following complete MO scheme is based on the P.E.S. data of G. H. King, et al.¹


¹G. J. King, S. S. Krishnamurthy, M. F. Lappert, and J. B. Pedley, *Faraday Disc. Chem. Soc.*, **1972**, *54*, 70.

Lewis Acid Behavior of BF₃ BF₃ + NH₃ \rightarrow F₃B:NH₃


- In terms of frontier orbital theory, the LUMO in BF₃ is the $\pi^* 2a_2''$ MO, which can receive an electron pair from a Lewis base.
 - This MO, formed from $2p_z$ orbitals, is

$$\Phi = c_1 \varphi(\mathbf{B}) - c_2 [\varphi(\mathbf{F}_a) + \varphi(\mathbf{F}_b) + \varphi(\mathbf{F}_c)]$$

• The LCAO for this is

• For the base NH₃, the HOMO is the weakly bonding σa_1 MO (cf. MO scheme), which can provide electrons to the boron $\pi^* 2a_2$ " MO in the following manner:

